
Stanford Economic Review

Stanford Undergraduate Economics Journal

Winter 2023

Volume 11



Editors and Staff

Editor-in-Chief

Karthick Arunachalam

Managing Editors

Madeleine Fischer

Karsen Wahal

Research and Technical Lead

Eric Gao

Director of Outreach, Marketing, and Communications

Parker Kasiewicz

Senior Associate Editors

Anshika Agarwal

Jun Yang Ang

Adi Badlani

Denise Lee

Numair Razzak

Pratham Soni

Benjamin Thomas

Associate Editors

Krista Arenaodu

Lettie Cabot

Vi Cheng

Andrew Conkey

Sajid Farook

Zachary Gaber

Sophia Hlavaty

Tina Li

Rosina Lin

Michael Murray

Tarini Mutreja

Kasha Tyranski

Araha Uday

Estella Zhou



Note from the Editor

On behalf of the Stanford Economic Review Editorial Board, I am pleased to present the
eleventh volume, winter issue, of Stanford University’s undergraduate economics journal.

Building on our momentum from last year, our publication has continued expanding its
global reach over the course of the 2022-2023 academic year. As our readership climbs to
new heights, we have remained steadfast in our commitment to publishing both exceptional
empirical research and incisive analyses of modern economic issues.

This journal issue spotlights undergraduate work on a wide variety of topics ranging from
electric vehicle adoption in California to asymmetric matching markets on 7 Cups, a social-
emotional support site. In addition to the six original research papers in this volume, com-
mentary pieces written for our publication over the last few months have evaluated popular
domestic policy proposals like raising the minimum wage and implementing larger-scale
basic income programs and have analyzed important political and economic developments
including China’s recent housing crisis and rising homelessness in Los Angeles.

As always, we are incredibly grateful to the authors whose writing is featured in this journal
edition and on the commentaries section of our website. Lastly, we would like to thank the
Stanford Economics Association (SEA) and the Stanford Economics Department for their
continued support.

Karthick Arunachalam
2022-23 Editor-in-Chief





Do Public Chargers Accelerate Mass EV Adoption? Evidence from
California

Robert Huang

University of Southern California

Abstract— In the United States, the transportation sector
contributes to 30% of the total emissions, 58% of which are
produced by private passenger vehicles. One barrier of mass
electric vehicle adoption is the lack of public chargers. Using a
panel dataset on over 1800 Californian ZIP codes from 2010 to
2021, I employ a shift-share instrumental variable to estimate
the EV demand elasticity with respect to chargers and the
heterogenous treatment effects of public charger deployments.
I document that a 1% increase in charger counts leads to
a 0.7% to 1.1% increase in EV sales on average, with a
larger increase in upper-middle income suburbs. I also use
the difference-in-differences strategy to estimate the differential
treatment effect of fast versus regular chargers. While PHEVs
are incompatible with fast chargers, early deployments of fast
chargers significantly boost BEV sales.

I. INTRODUCTION

The transportation sector is a major contributor to climate
change, accounting for 20% of the global carbon emissions
and 30% of emissions in the United States. In 2019, trans-
portation generated 8.5 gigatons of CO2 worldwide, 41%
of which came from private passenger cars1. In the US,
approximately 58% of transportation emissions were from
private light-duty vehicles in 20202. Given the significant
share of GHG emissions from the transportation sector,
especially private transport, governments have rolled out sub-
sidies to accelerate the adoption of electric vehicles (EVs).
The government intervention is justified by the positive
environmental externality from EV adoption. From 2015
to 2020, the sales share of EVs jumped from 0.9% to
5.8% in China, 0.8% to 2% in the US, and 1.2% to 10%
in Europe3. Nevertheless, to limit global warming below
2°C, transportation electrification needs to take place more
quickly.

The market share of EVs in the US pales when compared
to that in other major economies such as the EU and China.
Many early adopters value EVs’ environmental features
over their technical features. They voluntarily pay the price
premium of EVs for environmental goods (Kotchen and
Moore, 2007; Langbroek et al., 2016). However, high price
and low quality are two major barriers to mass EV adoption
(Egbue and Long, 2012; De Rubens, 2019). On average,
EVs are 20% more expensive than gas vehicles (GVs). Most

Acknowledgments: I thank Professor Matthew E. Kahn for his advice on
this paper.

1https://www.iea.org/reports/tracking-transport-2021
2https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-

gas-emissions
3https://www.iea.org/reports/electric-vehicles

EVs have a limited driving range and underperform GVs
on uneven terrains such as mountainous areas. Teslas are
high-quality EVs, but they are at least 20% more expensive
than other EVs. Given this tradeoff, it is essential to build
public chargers as a complement to EVs. As documented
in Neubauer and Wood (2014), access to public chargers
can ease middle-income consumers’ range anxieties and
incentivize them to substitute GVs with affordable EVs
despite the limited driving ranges.

To increase the price competitiveness of EVs, states have
been providing direct rebates to EV purchases. These rebates
feature diminishing marginal returns (Holland et al., 2019).
Previous works have found that rebates on EV purchasing
reduce little emissions at high costs and may cause an
increase in net emissions in regions with dirty electric grids
(Holtsmark and Skonhoft, 2014; Holland et al., 2016). This
suggests welfare gains in reallocating spendings on EV
purchase subsidies to other incentives programs including
charger installation rebates.

Previous research has documented indirect network effects
in the EV market (Li et al., 2017). The network effects kick in
through the installation of new chargers following the rising
EV sales. As it becomes easier to find chargers, the time cost
associated with driving EVs declines. The increasing charger
availability would thus in turn accelerate EV adoption. More
recent research has studied the effect of charger deployment
over time in different stages of EV adoption. Van Dijk et
al. (2022) document that the provision of charging network
boosts EV sales in early adoption. Springel (2021) has found
medium to long-run positive effects of charger deployment
on EV adoption, and the marginal returns of public charger
investments decline slower than that of other incentives
including purchasing rebates. Most of these past papers
use data at the state or metropolitan area level. My paper
contributes to this literature by studying the local dynamics
of EV adoption using ZIP-code level data from California.
Following the approach in Li et al. (2017), I estimate the
elasticity of EV sales with respect to public chargers using a
shift-share instrumental variable (Bartik, 1991). I document
a significantly positive effect of public charger deployment
on EV adoption, and the sales elasticity is higher in (upper)
middle-income ZIP codes with more single-family homes.

A recent development in the EV industry is the invention
of DC fast chargers that increase the charging speed by
more than three times. Past literature has not thoroughly
studied the differential effect of regular and fast chargers.
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In this paper, I employ a difference-in-differences (DID)
design to document a positive effect of fast chargers on
BEV adoption. I use PHEVs as the control group because
most PHEVs are not compatible with fast chargers. Their
sales should not respond to the deployment of fast chargers.
My paper contributes to a growing literature investigating
whether quality improvements in EVs and related products
incentivize non-environmentalists to adopt EVs (Egbue and
Long, 2012; Delmas et al., 2014; De Rubens, 2019). This
hypothesis of “accidental environmentalists” implies there
are higher returns to the installation of fast chargers than
regular chargers.

Environmental economics literature has studied the het-
erogenous treatment effects of non-binding “green nudges.”
For example, liberal households with high electricity con-
sumption are more likely to be nudged by electricity usage
reports to cut their energy use (Allcott 2011; Costa and Kahn,
2013). Water conservation messages are more effective when
targeting wealthier households (Ferraro and Miranda, 2014).
Public chargers are a form of “green nudges” because they
do not incur any financial burden on potential EV purchasers
but could ease their concerns about EVs’ limited driving
ranges. I study whether the public charger installation exhibit
heterogenous effects as do energy conservation nudges. Re-
lated EV literature has found that low-income population are
more responsive to financial incentives such as EV purchase
subsidies (Xing et al., 2021).

This paper is organized as follows: In Section 2, I present
a microeconomic framework of how charger deployment
incentivizes EV adoption. In Sections 3 and 4, I introduce
the dataset and study the cross-sectional distribution of EVs
and chargers. In Sections 5 and 6, I estimate the effects of
public chargers on EV adoption and the differential impacts
of regular versus fast chargers. Then I conclude and point to
future areas of study.

II. CONCEPTUAL FRAMEWORK

In this subsection, I introduce a basic framework of how
public charger investments affect EV demand. In this sim-
plified framework, I consider a duopoly market, where one
manufacturer exclusively produces EVs and the other exclu-
sively produces GVs. Both manufacturers seek to maximize
their profits. The government maximizes social welfare and
subsidizes both EV purchases and public charger installa-
tions. I follow the approach in Shao et al. (2017) and Kumar
et al. (2021) to set up my model. This model is an application
of Mussa and Rosen’s (1978) model, where consumers with
different preferences for specific product qualities coexist,
to the vehicle market featuring environmentalists and non-
environmentalists.

Consumers can choose to purchase an EV, purchase a GV,
or stay inactive. The utility from each of these scenarios is
respectively given as:

Ue = (1 + δ)θ − (pe − S) + κI (1a)
Ug = θ − pg (1b)

Un = 0 (1c)

In the above equations, Ue, Ug , and Un are the utilities
from purchasing EVs, GVs, and staying inactive respectively.
is consumers’ valuation of the car, depending on the indi-
vidual tastes on size, color, etc. is a measure of consumers’
environmental awareness. For simplicity, I assume follows a
uniform distribution on [0, 1], and is in the interval [0, 1]. The
interaction term between θ and δ is positive for environmen-
talists, showing that they derive more utility from driving
EVs than non-environmentalists do. pe and pg are the prices
of EVs and GVs, and S is the purchase subsidy per EV. I is
the total investment in public chargers, and κ is a measure
of consumers’ utility change with respect to the charger
investment. κ is larger for high-income consumers whose
marginal time cost of driving EVs is high and consumers
without access to residential charging. I assume it can take
any value from [0, 1].

I solve the indifference points by equating Ue to Ug and
Ug to Un respectively. Consumers are indifferent between
EVs and GVs when θ =

pe−pg−S−κI
δ , denoted as θ1, and

they are indifferent between GVs and staying inactive when
θ = pg , denoted as θ2. The demand for EVs is 1 − θ1, and
the demand for GVs is θ1− θ2. I substitute in θ1 and θ2 and
rearrange to get the inverse demand functions:

pe = 1 + δ + S + κI − (1 + δ)qe − qg (2a)
pg = 1− qe − qg (2b)

Without loss of generality, I assume the production cost
per GV is zero and that per EV is C (C > 0) because EV
batteries are expensive. The profit functions of the EV and
GV manufacturers can be expressed as πe = (pe − C)qe
and πg = pgqg . These profit functions are concave because
δ2πe

δq2e
= −2δ−2 < 0 and δ2πe

δq2e
= −2 < 0. The manufacturers

supply the quantity that maximizes their profits. To derive the
optimal sales of EVs and GVs, I differentiate πe and πg with
respect to qe and qg and set the derivatives to 0:

1 + δ + S + κI − (2 + 2δ)qe − qg − C = 0 (3a)
1− qe − 2qg = 0 (3b)

When (3a) and (3b) are solved, the EV sales and GV sales
are given as:

qe =
1 + 2δ + 2S + 2κI − 2C

4δ + 3
(4a)

qg =
1 + δ + C − S − κI

4δ + 3
(4b)

Equations (4a) show the mechanism of EV adoption. EV
sales are higher in areas with higher environmental awareness
(δ), more purchase subsidies (S), and larger investments in
chargers (I). The sales are also a monotonically increasing
function of κ, which is higher for potential purchasers
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who benefit more from public charger deployment. The EV
demand of this subset of consumers is more elastic, so
charger deployment could yield larger returns when targeted
to them. is the key variable of interest in this paper because
it measures the responsiveness of EV sales to charger in-
vestments. I will study the heterogenous treatment effects of
public chargers (i.e. variations of κ across space).

Equation (4b) shows that EVs and GVs are substitutes.
More people are incentivized to substitute away from GVs
when EV purchase rebates are higher (S) and public chargers
become more accessible (I). However, the higher cost of
producing EVs (C) causes higher EV prices. This induces
negative income effects and thus hinders EV adoption.

III. DATA

To analyze the effects of charger deployment on EV
adoption, I compile a comprehensive dataset at ZIP/EV
type/year level with 1800 Californian ZIP codes from 2010
to 2021. In most of my regression analysis, I focus on the
1200 ZIP codes that have installed at least one public charger
by 2021. The EV sales data is from the California Energy
Commission.4. This dataset provides the sales of BEV and
PHEV respectively in each ZIP code each year. The charger
data is from the Alternative Fuels Data Center (AFDC)5. This
dataset offers the information on every public EV charging
station in the US, including its location, number of regular
and fast chargers, and open year. Based on this information, I
calculate the number of regular and fast chargers by ZIP/year
and merge it into the EV sales data.

I calculate the net vehicle price by EV type (BEV or
PHEV) for every year from 2010 to 2021. For each EV
brand/type, I calculate the average manufacturer’s suggested
retail price (MSRP) of all its available vehicle models in each
given year. I then average the brand prices by EV type/year6.
I merge this dataset by EV type/year into the main dataset.
To calculate the net price at ZIP/EV type/year level, I use the
EV rebate dataset from the California Clean Vehicle Rebate
Project7. This dataset includes data on the location, EV
brand, type, rebate, and time of each EV purchase that has
applied for rebates since 2010. This enables me to calculate
the purchase rebates per BEV and per PHEV respectively in
each ZIP/year. I merge it into the sales and chargers dataset,
and the net price by ZIP/type/year equals the average price
minus the rebates.

Another essential part of my EV dataset consists of demo-
graphic data. The household income, education, population
density, and single-family home data are from the American
Census Survey (ACS)8. The original data are available at
census tract level. I map each census tract to a ZIP area

4https://www.energy.ca.gov/files/zev-and-infrastructure-stats-data
5https://afdc.energy.gov/
6For example, Tesla produced three models in 2018: Model S, Model X,

and Model 3. All are BEVs. The average price per Tesla (BEV) in 2018 is
calculated by taking the average MSRP of these three models in 2018. To
calculate the average price per BEV in 2018, I take the average BEV prices
across all brands including Tesla, Nissan, etc.

7https://cleanvehiclerebate.org/en/rebate-map
8https://data.census.gov/cedsci/

and take the population-weighted average within each ZIP
code. The income data is available each year, while the other
three variables are cross-sectional from 2020. I merge in the
income data to the main dataset by ZIP/year and the cross-
sectional data by ZIP. In the following sections, I use this
ZIP/EV type level panel dataset to test multiple hypotheses.

IV. EV ADOPTION AND CHARGER DEPLOYMENT IN
CALIFORNIA

A. General time trends

In the past decade, California has launched various state
initiatives to incentivize the substitution of GVs with EVs9.
In 2021, an average Californian BEV purchaser receives
$2500 point-of-sale rebates from the California Air Re-
sources Board (CARB), and a PHEV purchaser receives
$1600. Aside from state incentives, electric utility companies
such as Southern California Edison offer multiple EV rebate
projects to expedite the EV adoption10.

Fig. 1

Figure 1 shows the number of private light-duty EVs in
California over time. In 2010, there were only 759 EVs (593
BEVs and 166 PHEVs), and this number rose to 187,769 in
2015 (99,883 BEVs and 87,886 PHEVs), and to 1,042,138
in 2021 (663,013 BEVs and 379,125 PHEVs). The derivative
of EV counts, especially BEVs, with respect to time is
increasing, showing that EV sales are rising. As of 2021,
there were almost twice as many BEVs as PHEVs. The
adoption trend of BEVs and PHEVs was similar before 2017
but began to diverge sharply afterward. Although PHEVs
have lower upfront costs, they are not fully electric and have
smaller batteries supporting shorter driving ranges. The rapid
increase in BEV counts in recent years indicates that vehicle
quality is an important consideration for new EV adopters.

Along with the rising EV sales is the deployment of
public chargers, which are essential to ease EV drivers’ range
anxiety. The charger rebate policy varies across counties. A
regular charger is eligible to a rebate from $3500 to $6000
and a fast charger from $45,000 to $70,000. Counties in
Southern California and Bay Area generally offer higher
rebates. Charger installers can also apply for rebates from
the electric utility companies.

Figure 1 shows that the number of public chargers has
grown exponentially in the past few years. From 2010 to

9https://afdc.energy.gov/laws/all?state=CA
10https://www.sce.com/residential/ev-rates-rebates
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(a) EVs

(b) Chargers
Fig. 2

2015, the total count of regular chargers grew from 305 to
2473, and that of fast chargers increased from 3 to 551. The
count of both public regular and fast chargers rose by more
than ten times from 2015 to 2021. In 2021, there were 28,495
regular chargers and 6473 fast chargers in California. Most
public chargers are regular chargers, but the share of fast
chargers rose over time. Figure 1 suggests that BEVs and
fast chargers are complements because the jump in the BEV
count coincides with the jump of the fast charger count since
2017. This is because most existing PHEV models are not
compatible with fast chargers.

B. Mapping the spatial variations

Figures 2 shows the spatial distribution of EVs and
chargers across ZIP codes in 2021. EVs and public chargers
mostly concentrate in Southern California (55%) and the Bay
Area (36%). The distribution of new EV sales is similar.
Californians purchased 248,470 new EVs in 2021, 59% were
in Southern California and 31% in the Bay Area. Over one-
fourth of EVs and new EV sales in California are in Los
Angeles County. EV ownership is the lowest in Superior
California counties (counties to the north of the Bay Area).
Most counties in the region still have fewer than 100 EVs
today. Regional geographical features could play a role in
people’s decision to purchase EVs. Superior California is
mountainous and sparsely populated, so drivers may prefer
gas-powered vehicles because of their longer driving ranges
and stronger car engines. These counties are also generally
more conservative.

The distribution of public chargers aligns with that of
EVs. In 2021, 47% of public chargers are in Southern
California and 36% in the Bay Area. Los Angeles County
has almost 9000 public chargers, about 23% of the total

count in California. The demand for charging is high given
the large EV count in the county. This incentivizes the
expansion of the public charging network. Access to public
chargers reduces the marginal time cost of driving EVs and
thus in turn accelerates the EV adoption. This demand-side
economies of scale imply the presence of network effects in
the market (Katz and Shapiro, 1994). The positive network
effects explain the collocation of EVs and chargers. Also
because of this positive feedback loop, areas already with
more EVs and chargers tend to adopt EVs and deploy charg-
ers at faster rates, leading to over-dispersed distributions of
EVs and chargers. Both EVs and chargers are highly right-
skewed, with a skewness of 3.68 and 6.87 respectively.

C. Regression results on spatial variations

Local demographic attributes are important in determining
the pace of EV adoption and charger deployment. EVs are
more expensive, and the emergence of high-quality EVs has
incentivized high-income people to substitute GVs with EVs
(Delmas et al, 2014). The voluntary constraint hypothesis
posits that environmentalists would cut their carbon foot-
prints in the absence of a Pigouvian tax (Kotchen and Moore,
2007). Educated people with higher environmental awareness
are thus more likely to purchase EVs (Kahn, 2007; Okada et
al., 2019). Given the higher demand, businesses would install
more chargers in these areas. However, in ZIP codes that
have many single-family homes with residential charging,
businesses install fewer public chargers even if the EV count
is high. The expected profits are lower because residential
charging is a substitute to public chargers. In this section, I
use a negative binomial model to study how EVs and public
chargers distribute across California. The model is chosen
based on the facts that the distribution of EVs and chargers
are over-dispersed and most ZIP codes have at least one EV
and one public charger. I use cross-sectional data from 2021,
and the unit of analysis is a ZIP code. The density function
can be written as:

f(yi|xi) =
τθ + yi

τ(θ)τ(1 + yi)
(

µi

θ + µi
)yit(

θ

θ + µi
)θ, (5a)

where y is the count of EVs or public chargers, and θ is the
dispersion parameter and denotes the gamma function. µi is
the conditional mean defined as:

µi = exp(β′xi) (5b)

with x a vector of local attributes. I include county-fixed
effects and cluster standard error by county. The results are
shown in Table 1. In columns (1) to (4), the dispersion
parameter is significantly positive at 5% level, confirm-
ing the appropriateness of the negative binomial model.
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Columns (1) and (2) show that there are more BEVs and
PHEVs in richer ZIP codes. The expected count of BEVs
and PHEVs increase by a factor of 6.08 and 5.32 respectively
when income rises by a factor of e (approximately 2.718).
BEV sales are more sensitive to income, confirming the
“accidental environmentalists” as BEVs have higher quality.
The significantly positive coefficient of population density
suggests that urban areas have adopted more EVs. Education
is insignificant, and single-family home percentage is only
weakly significant in column (2).

In columns (3) and (4), single-family home percentage
is significantly negative, while most other variables do not
significantly affect public charger counts. A conversion into
incidence-rate ratio shows that the expected regular and fast
charger count declines by 24% and 14% respectively follow-
ing a 10% rise of the single-family home percentage. The
difference in coefficients indicates that residential charging
crowds out more investments in regular chargers than in
fast chargers. By 2021, 70% of the ZIP codes still have
not installed any fast chargers. In column (5), I run a logit
regression on the fast charger dummy. A 1% increase in
median income raises the odds of installing fast chargers by
1.11%. High-income people have higher marginal costs of
time, so they value fast charging more. Consistent with col-
umn (4), the single-family home percentage is significantly
negative in column (5). Education and population density are
insignificant.

V. EFFECTS OF CHARGER ACCESSIBILITY ON EV
ADOPTION

A. EV sales model

In the previous section, I have found a positive spatial
correlation between EV adoption and charger accessibility.
Previous research has used MSA or city-level data to estimate
the elasticity of EV demand with respect to public chargers
(Li et al., 2017; Springel, 2021; Van Dijk et al., 2022). While
policy differences usually explain a large part of variations
across MSAs or cities, Figure 2 shows that EVs and chargers
could differ significantly even in adjacent ZIP codes. In this
section, I estimate the effect of charger installation on EV
sales at the ZIP level and study the heterogenous treatment
effects. I estimate the following basic regression for EV type
e (BEV or PHEV) in ZIP i (located in county k) in year t:

log(Salesiet) = β0 + β1log(Chargersit)

+β′
2Xiet + γt + σke + ϵiet

(6)

In equation (6), X is a vector of covariates including the
net vehicle price, income, etc. I include year-fixed effects (γt)
and county/type effects (σke). Standard errors are clustered
by county.

Because of the indirect network effects, the charger count
is endogenous. I employ the instrumental variable (IV) strat-
egy. Similar to the approach in Li et al. (2017), my chosen
IV is the interaction of two ZIP-code level variables: the
percentage of local population living within half a mile from
supermarkets or grocery stores11 and the one-year lagged
number of outside the county where the ZIP code is in. The
formula of the IV for ZIP code i (in county k) in year t is
given by:

Zit = Grocery%i ×
∑

j ̸=k,j∈J

Chargersj,t−1 (7)

This is a shift-share instrument (Bartik, 1991; Goldsmith-
Pinkham et al., 2020). The lagged charger count captures
the state-level trend in charger deployment independent of
potential county-level shocks (the “shift” component). The
food access variable is an estimation of the percentage
of potential buyers who have access to new chargers (the
“share” component). In the US, grocery stores like Kroger
are major owners of charging ports. They install chargers
to attract consumers who drive EVs. In California, stores
are also incentivized to invest in chargers to gain green tax
credits. Using this interaction term as an IV requires that a
shock on charger supply has larger impacts on ZIP areas
where people live closer to the chargers. This is a valid
assumption because the California Vehicle Survey shows that
people are more likely to consider purchasing EVs if they
see more chargers near their homes or workplaces12.

11The food access is provided by the US Department of Agricul-
ture (USDA): https://www.ers.usda.gov/data-products/food-access-research-
atlas/download-the-data/. I use the data from 2019. The original data is
at census tract level. I convert it to ZIP-code level by taking the average
percentage across all census tracts within a ZIP-code area.

12https://www.energy.ca.gov/data-reports/surveys/california-vehicle-
survey
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I argue that this IV passes the exogeneity test. Both the
state-level trend in charger deployments and supermarket
access are positively related to the local count of public
chargers. Column (1) of Table 3 shows the IV is posi-
tively significant in the first-stage regression, satisfying the
monotonicity assumption from the local average treatment
effect (LATE) framework (Angrist et al., 1996). The F-
statistic from the first stage is 357, much higher than the
weak instrument threshold of F=10. The IV satisfies the
independence assumption because the local EV sales and
public charger counts affect neither people’s decision to
open grocery stores nor the lagged charger count. The
exclusion restriction assumption should also be satisfied. I
have added in county/EV type fixed effects to control for
the possible common unobservable variables across counties.
Conditional on them, grocery store access and the lagged
out-of-county charger count are unlikely to directly affect
EV sales. Columns (2) and (3) from Table 3 suggest the
IV is uncorrelated with the error term. GV counts and EV
chargers are both correlated with unobservable shocks in the
transit sector (e.g. failing public transit that incentivizes more
people to drive, either GVs or EVs), so column (2) reports
the spurious result that EV chargers cause an increase in
GV counts. Yet, under the same specification, the IV is
insignificant in column (3) with a p-value of 0.805. The
highly insignificant result implies the validity of the IV.

B. Main estimation results

Table 2 presents the estimated results of different spec-
ifications of equation (6). Columns (1) and (2) show the
basic models, and local demographic attributes are added
in columns (3) and (4). In these columns, logged chargers
have a significantly positive coefficient. Given the log-on-
log specification, the coefficient can be interpreted as elas-
ticity. This corresponds to in equation (1a). From the OLS
estimation, a 1% increase in accessible chargers leads to
a 0.44% and 0.13% (see columns (1) and (3)) increase in
EV sales, and from the IV estimation, 1.09% and 0.73%
respectively (columns (2) and (4)). These values are slightly
higher than the estimates from Li et al. (2017), which is
based on MSA-level data across the US. California is more
liberal than the rest of the nation, so more people are at
the margin of substituting their fuel-powered cars with EVs.
The downward bias of OLS implies that the unobserved
shocks to EV sales are negatively correlated with the charger
count. An example is electric utilities’ incentive programs for
residential charging. The residential charging programs will
increase EV sales but slow down the deployment of public
chargers.

The coefficient of the net price of EVs is significantly
negative in all columns. The estimated price elasticity is -
2.02 to -2.93. Berry et al. (1995) have found that the price
elasticities of automobiles range from -3 to -10, with an
average of -7.2. The EV price elasticity is lower because
many people purchase them out of environmental concerns
and are thus less price sensitive (Kahn, 2007; Langbroek
et al., 2016). As more environmentalists have made the
substitution, the price elasticity may start to rise. A limitation
of my specifications is that they do not account for the
differential quality between EV brands but only EV types
(BEV and PHEV). This could cause price elasticities to bias
downward (Berry et al., 1995).

The estimated income elasticity is roughly 1 to 1.2. It is
significantly greater than 0 at the 1% level. This is consistent
with the spatial distribution of EVs because EV counts are
higher in wealthier neighborhoods. In column (4), I find that
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more educated ZIP codes with higher population density and
more single-family homes adopt more EVs.

If local EV sales are affected by chargers in other
ZIP codes, the Stable Unit Treatment Value Assumption
(SUTVA) of the potential outcome framework would be
violated. My baseline specifications cluster standard errors
by county to address this spatial correlation within each
county. In columns (5) and (6), I further demonstrate my
results are robust to spatial correlations. In column (5), I
include county/year fixed effects. This captures the county-
level shock in a given year. For example, if a ZIP code in
downtown installs many chargers, this could raise EV sales
in all other ZIP codes because people work in downtown and
can charge during work. The coefficient of logged chargers
is still significantly positive and numerically similar as in
column (2).

In column (6), I address the concern that EV sales may be
affected by public chargers in neighboring ZIP codes. Instead
of using the charger count within a ZIP code, I calculate the
accessible charger count using inverse-distance weighting:

Accessiblechargersi = Chargersi+
∑

j∈J

Chargersj
d2ij

(8)

where J is a set of ZIP codes within 5 miles from ZIP code
i, and d is the distance between two ZIP codes in miles.
When accessible chargers is used, the estimated elasticity is
still significantly positive. It is roughly 10% smaller than the
value in column (2), suggesting that 10% of the EV sales
increase is due to charger installation in nearby ZIP codes.
This numerically small value indicates that most people
would not substitute to EVs unless chargers are available
very close to where they live or work.

C. Heterogenous treatment effects across ZIP codes

Previous literature has documented lower-income households
are more responsive to EV purchase subsidies (Xing et

al., 2021). The effectiveness of charger deployment is
also likely to vary across population and geography. I
hypothesize the elasticity of EV sales with respect to
chargers is higher in higher-income and more urban ZIP
codes. The price premium of EVs is less of a concern for
richer people who care more about the quality of EVs and
the convenience of driving EVs. Public chargers make it
more convenient to charge and would incentivize them to
substitute to EVs. Urban areas are more compact and less
mountainous than rural areas, so they are more suitable for
EVs given the existing technical limitations. I test these and
some other hypotheses by including the interaction terms
between demographic variables and the charger count in
equation (6). The demographic variables are assumed to
be exogenous, so I interact the demographic variable with
the shift-share IV specified in equation (7) to construct a
new IV for each interaction term. The estimation results are
reported in Table 4.

In column (1), I test whether the elasticity differs across
BEV and PHEV buyers and find no significant result. Al-
though fast chargers are only compatible with BEVs, more
than 80% of public chargers are regular chargers. This
explains why the treatment effect of an average charger does
not differ by EV type. The result is consistent with previous
findings that EV demand elasticity with respect to purchase
subsidies do not vary across EV type (Clinton and Steinberg,
2019).

In column (2), I study the heterogeneities across income
groups. The high-income dummy equals 1 for ZIP codes
above the 75th percentile of median income, and the mid-
income dummy equals 1 for ZIP codes between the 25th
and the 75th income percentile. I find that the elasticity in
mid-income areas is 33% higher than that in low-income ZIP
codes, whereas the elasticity in high-income and low-income
areas do not differ significantly. This suggests that the returns
to charger investment is a concave function of income. The
high price of EVs is the biggest barrier to adoption for low-
income households. In rich ZIP codes, households concern
more about vehicle quality (Egbue and Long, 2012). With
a fixed budget, they would prefer GVs with better engines
such as Cadillac over Tesla. Access to public charging offers
them smaller incentives for substitution.

In columns (3) and (4), I test whether the elasticity
differs by neighborhood features. I find no evidence that
people in high-density urban areas are more responsive to the
deployment of public chargers, but the elasticity is higher in
neighborhoods with more single-family housing. The pattern
is significant when the median income is controlled, so it
cannot solely be explained by spatial sorting (i.e. richer
people drive more and live in the suburb with more single-
family homes). A 10% increase in the percentage of single-
family homes causes the elasticity to rise by 10.4%. This is
significant at the 10% level. While drivers can install home
charging in single-family houses, home charging features a
high fixed cost, whereas public charging has zero upfront
cost. The per-kWh saving from home charging compared
to public charging is low, so the average cost of home

8



charging drops below that of using public charging only in
the long run. Single-family house owners are thus cautious
in investing in residential charging.

VI. EARLY DEPLOYMENT OF FAST CHARGERS

A. Comparing trends of BEVs versus PHEVs

Figure 1 shows that the count of BEVs and PHEVs
began to diverge in 2017, which coincides with the early
deployment of fast chargers. This motivates the use of DID to
estimate the treatment effect of early fast charger deployment
on annual EV sales. The feasibility of this approach is due
to the fact that PHEVs are generally not compatible with
fast chargers, so they constitute an ideal control group for
BEVs. This strategy is also boosted by results from Table
4 implying the elasticities of BEV sales and PHEV sales
with respect to public chargers (mostly regular chargers as
of now) do not differ significantly. This rules out the regular
charger deployment as a confounding factor.

I focus on the 68 ZIP codes that initially deployed fast
chargers in 2018 or 2019 (32 from 2018 and 36 from 2019)
and have built at least 11 fast chargers (the 90th percentile
among all ZIP codes with at least one fast charger) by
2021. These ZIP codes are located in 23 different counties
and are at least five miles from each other, so the spatial
spillovers are likely limited. I estimate the following event-
study specification for ZIP code i, EV type e in year t:

Salesiet =
3∑

τ=−6

βτDeploymentiτ ∗BEVe +BEVe

+ γt + φk + ϵiet

(9)

Deployment is a dummy that equals 1 if it is τ years from
the deployment of the first fast charger in ZIP code i.τ is set
to -6 for periods more than 6 years before the treatment. The
omitted time category is τ = −1. BEV is equivalent to the
treatment group dummy. β is a vector of DID estimates.
I include year-fixed effects (γt) and county-fixed effects
(φk). The standard error is clustered by county. The 95%
confidence intervals of are plotted in panel (a) of Figure 3.

The DID coefficient is insignificant at the 5% level except
when τ = −5. It is significant at the 10% level when τ = −6
and insignificant in other pre-treated periods. However, these
could be explained by the limited BEV supply in the early
years of the 2010s. For example, Tesla’s first popular BEV
model, Model S, was released in late 2012. Other major BEV
brands such as Nissan released their first BEV models even
later. Since various BEV models became available, BEV and
PHEV sales have followed a parallel trend until the treatment
period (see the insignificant DID coefficients since τ = −4).
The coefficients are also numerically small, none of which
is larger than 10 in magnitude.

Following the opening of the first fast charging stations,
BEV sales significantly increased, with highly significant
positive coefficients in all post-treatment periods. In the year
of treatment, BEV sales rise by 57 per ZIP code, and the
magnitude of increase continues to rise to 202 per ZIP code

(a) DID

(b) DDD
Fig. 3

three years later. Fast charger installation is not a one-time
event. It is likely that ZIP codes add in more fast chargers
after the initial deployment, leading to large divergences in
sales between BEVs and PHEVs.

In recent years, breakthroughs have been made in improv-
ing the quality of BEVs such as the invention of batteries
that support longer driving ranges. Such improvements may
coincide with the deployment of fast chargers and would
cause BEV and PHEV sales to diverge regardless of fast
chargers deployments. To rule out these potential explanatory
factors, I employ a triple-difference (DDD) model to test the
robustness of the previous result. The DDD estimator is the
difference between two DID estimators: the DID estimator
based on the 68 ZIP codes used to estimate equation (9) and
the DID estimator based on another 484 untreated ZIP codes
that satisfy (1) no fast charger prior to 2019; (2) fewer than 5
fast chargers by 2021; and (3) at least three miles away from
any treated ZIP code. The difference in the DID estimators
should take out the cross-ZIP codes unobservable trends that
have caused BEV and PHEV sales to diverge. I estimate the
following equation for ZIP code i, EV type e in year t:

Salesiet = α1BEVe + α2Fasti + α3BEVe · Fasti
+ ω′

1BEVe · Y eart + ω′
2Fasti · Y eart

+

3∑

τ=−6

βτDeploymentiτ · Fasti ·BEVe + γt

+ ϕk + ϵiet
(10)

In equation (10), fast is a dummy equal to 1 if the ZIP code
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is one of the 68 ZIP codes that initially installed fast chargers
in 2018 or 2019. Year is a vector of year dummies. Their
interaction terms with the BEV dummy capture factors that
accelerate the BEV adoption aside from fast chargers (e.g.
quality improvements or rising purchase rebates for BEVs).
Other variables are the same as in equation (9). ω′

1 is a vector
of DID estimates by year for the control ZIP codes where
fewer than 5 fast chargers have been built as of 2021. This
captures the factors affecting the BEV adoption trend aside
from the initial deployment of fast chargers. β is a vector
of DDD estimates equal to the difference between the DID
estimate from the treatment ZIP codes and the control ones.
This should equal to the average treatment effect of fast
chargers installation. Standard errors are clustered by county.
The 95% confidence intervals of β are shown in panel (b)
of Figure 3.

Before the installation of fast chargers, none of the DDD
coefficients is statistically significant at the 5% level, not
even at the 10% except when τ = −3. The BEV sales
surge significantly after the installation. The annual sales
increase by 43 per ZIP code in the treatment year and by 143
three years after the initial deployment. All coefficients are
significant at the 1% level, but they are numerically smaller
than the DID estimates. This indicates that exogenous factors
such as BEV quality improvements cause the DID estimates
to bias upward. Their effects are mitigated, if not cancelled
out, when the DDD estimator is used.

To estimate the average treatment effect, I simplify
equations (9) and (10) to include a single post-treatment
dummy instead of a separate deployment dummy for each
period. The simplified equations are shown below.

Salesiet =βBEVe · Postit
= + ω′Xit +BEVe + fixedeffects+ ϵiet

(11a)
Salesiet =α1BEVe + α2Fasti + α3BEVe · Fasti

+ ω′
1BEVe · Y eart + ω′

2Fasti · Y eart
+ βPostit · Fasti ·BEVe
+ ω′

3Xit + fixedeffects+ ϵiet

(11b)

The post dummy equals 1 if ZIP code i has installed fast

chargers in year t. X is a vector of demographic variables
as appear before. In equation (11b), I include the interaction
terms between year dummies and the BEV dummy and the
fast charger deployment dummy (i.e. the treatment dummy)
receptively. The former controls for shocks particular to BEV
sales in year t such as the introduction of a new Tesla
model. The latter controls for shocks to EV sales particular
to the treated ZIP codes such as the roll out of new EV
purchase subsidies in these areas. Failing to account for
such positive shocks at the BEV/year or treatment/year level
would bias (the estimated treatment effect) upward. I include
different fixed-effects such as county-fixed effects, year-fixed
effects, and county/year-fixed effects. The estimation results
are reported in Table 5.

From columns (1) to (3), the DID estimator is signifi-
cantly positive and has a numerical value around 105. This
represents a large increase as the average BEV sales in the
treated ZIP codes is 87 one year prior to the treatment.
With county/year fixed effects, I control for county-level
factors such as the opening of fast charging stations in
downtown, which could affect the EV adoption in all parts
of the county. The DID coefficients are smaller in columns
(2) and (3), but the difference is small in magnitude. In
columns (4) to (6), the DDD estimator is around 60 and
highly significant. The BEV sales increase is smaller but
still sizable under this specification. Again, the coefficient is
only slightly smaller in magnitude when county/year fixed
effects are added. Assuming that the fast charger deployment
in downtown is the primary factor captured by county/year
fixed effects, results from Table 5 indicate that EV demand is
more responsive chargers near where people live. Although
people may drive to downtown regularly (e.g. for work),
the driving distance is relatively short, so they can make
a round trip without charging. Fast chargers in downtown
are thus less effective in incentivizing BEV purchases when
people expect not to use them a lot. Future research can study
whether this holds for all cities, especially multicentric cities
such as Los Angeles.

B. Placebo tests

One key assumption of the DID strategy is the “no
anticipation” effect (Borusyak et al., 2022). If people expect
fast chargers to be built soon and purchase BEVs before they
are actually built, this could bias the estimators. I conduct
a temporal placebo test by moving the installation time one
year earlier and replot Figure 3. These results are shown in
panel (a) of Figure 4.

Results show that the mean placebo difference remains
insignificant and numerically small in magnitude in period
0, the placebo treatment period. Starting from period 1, the
true treatment period, all estimates are highly significant and
numerically close to the estimates from the corresponding
estimates in the original specifications. These placebo results
provide further confidence to the positive effect of fast
chargers that I have found.

Recent literature has noted the potential drawbacks of
the canonical two-way fixed effects DID framework when
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(a)

(b)

Fig. 4

applied to scenarios with staggered treatment and dynamic
treatment effects (De Chaisemartin and D’Haultfœuille,
2020; Athey and Imbens 2022; Roth et al., 2022). In this
case, the DID estimator (see from previous equations) rep-
resents a weighted average of the dynamic effects, where
the weights could be negative. This is problematic because
the estimated treatment effect may be negative, while the
effect of participation is always non-negative. Given these
concerns, as a second placebo test, I employ the doubly-
robust DID estimator proposed by Callaway and Sant’Anna
(2021). Their estimator allows for multiple time periods,
variations in treatment time, and conditional parallel trends.
The event-study plot using this estimator is shown in panel
(b) of Figure 4. The estimates treatment effect similar to the
conventional DID estimates in both the significance level and
the numerical values.

In an alternative setup, the 68 ZIP codes that initially de-
ployed fast chargers in 2018 or 2019 constitute the treatment
group, and the never-treated ZIP codes (i.e. no fast chargers
as of 2021) are used as controls. This setup would not pass
a conventional test for parallel trend assumption due to the
structural differences between treatment and control units
(e.g. the never-treated ZIP codes tend to be poorer and more
rural). However, the parallel trend assumption is satisfied
when conditional on demographic variables including educa-
tion, income, and population density. The event-study plots
are shown in panel (c) of Figure 4. The outcome variable is
BEV sales in the left plot and PHEV sales in the right plot
as a robustness check.

In the left plot, the DID estimator is insignificant and
numerically close to 0 in all pre-treatment periods. Starting
period 0, the DID estimator becomes significantly positive
at the 5% level until period 3. Under this specification,
the annual BEV sales rise by 39.15 on average following
the initial deployment of fast chargers. The estimated sales
increase is smaller than the estimate from Figure 3, which
could be attributed to the different chosen control groups.
When I use PHEV sales as the control in Figure 3, the
estimated treatment effect could bias upward due to the
alternative explanatory factors such as the larger investments
in improving BEV quality.

Because I do not control for the count of regular chargers,
this could be a confounding factor. Following the initial fast
charger installations, the count of regular chargers may also
surge as developers expect more EV purchases and a rising
demand for charging. Were this the case, it would be hard
to tell whether the surge in BEV sales should be attributed
to regular chargers or the initial fast charger deployment. To
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